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ABBREVIATIONS: 

AQP3: aquaglyeroporin 3 gene 

AS3MT: Arsenic (III) methyltransferase gene 

BMI: body mass index 

DMA: dimethylarsinate 

EHMT1: histone methyltransferase gene 

iAs: inorganic arsenic 

HPLC: high performance liquid chromatography 

IBD: identity­by­descent 

ICPMS: inductively coupled plasma mass spectrometry 

IQR: interquartile range 

LOD: logarithm (to the base of 10) of the odds 

MMA: monomethylarsonate 

METTL20: methyltransferase­like 20 gene 

N6AMT1: N­6 adenine­specific DNA methyltransferase gene 

PRDM9: PR domain zinc finger protein 9 gene 

QTL: quantitative trait locus 

RNMT: RNA methyltransferase 

RRP8: ribosome RNA­processing protein 8 gene 

SHFS: Strong Heart Family Study 

SHS: Strong Heart Study 

SOLAR: Sequential Oligogenic Linkage Analysis Routines (SOLAR) 

STR: Short tandem repeat 
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ABSTRACT 

Background: Arsenic (III) methyltransferase (AS3MT) has been related to urine arsenic 

metabolites in association studies. Other genes might play a role in arsenic metabolism and 

excretion. 

Objective: To evaluate genetic determinants of urine arsenic metabolites in American Indian 

adults from the Strong Heart Study (SHS). 

Methods: We evaluated heritability of urine arsenic metabolites [% inorganic arsenic (iAs), % 

monomethylarsonate (MMA), and % dimethylarsinate (DMA)] in 2,907 SHS participants with 

urine arsenic measurements and at least one relative within the cohort. We conducted a 

preliminary linkage analysis in a subset of 487 participants with available genotypes on ~400 

short tandem repeat markers using a general pedigree variance component approach for 

localizing quantitative trait loci (QTL). 

Results: The median (interquartile range) for %iAs, %MMA and %DMA were 7.7% (5.4, 

10.7%), 13.6% (10.5, 17.1%) and 78.4% (72.5, 83.1%), respectively. The estimated heritability 

was 53% for %iAs, 50% for %MMA and 59% for %DMA. After adjustment for sex, age, 

smoking, body mass index, alcohol, region and total urine arsenic concentrations, LOD scores 

indicated suggestive evidence for genetic linkage with QTLs influencing urine arsenic 

metabolites on chromosomes 9 (LOD=2.05 for % iAs and 2.10 for % MMA), 5 (LOD=2.03 for 

% iAs) and 11 (LOD=1.94 for %iAs). A peak for % DMA on chromosome 10 within 2 

megabases of AS3MT had an LOD=1.80. 

Conclusions: This population­based family study in American Indian communities supports a 

genetic contribution to variation in the distribution of arsenic metabolites in urine, and 

potentially the involvement of genes beyond AS3MT. 
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BACKGROUND 

Exposure to inorganic arsenic (iAs) from water, food and ambient air is widespread 

(Franklin et al. 2008; Gilbert­Diamond et al. 2011; Nordstrom 2002). Humans metabolize iAs 

(arsenate and arsenite) to methylated compounds [predominantly monomethylarsonate (MMA) 

and dimethylarsinate (DMA)] that are largely excreted in urine together with iAs (Cullen and 

Reimer 1989; Naranmandura et al. 2006; Vahter 2002). In human populations, the average 

distribution of arsenic metabolites in urine is ~10­30% iAs, ~10­20%MMA and ~60­80% DMA 

(Chiou et al. 1997; Gamble et al. 2005; Gomez­Rubio et al. 2012; Hopenhayn­Rich et al. 1996b; 

Vahter 2000). There is, however, substantial inter­individual variation in the distribution of urine 

arsenic metabolites. Understanding the determinants of arsenic metabolism is important because 

differences in arsenic methylation patterns in urine have been associated with differential risk of 

skin lesions, cancer and cardiovascular disease in several populations exposed to arsenic in 

drinking water (Chen et al. 2003; Del Razo et al. 1997; Hsueh et al. 1997; Kile et al. 2011; 

Steinmaus et al. 2006; Wu et al. 2006; Yu et al. 2000). 

Polymorphisms in arsenic (III) methyltransferase (AS3MT) have been consistently 

associated with urine arsenic methylation patterns in populations from Argentina (Schlawicke et 

al. 2007; Schlawicke et al. 2009), Chile (Hernandez et al. 2008), Mexico (Gomez­Rubio et al. 

2010; Meza et al. 2005), and Central Europe (Lindberg et al. 2007). Variation near the AS3MT 

gene has also been recently associated with arsenic metabolism in a genome­wide association 

study from Bangladesh (Pierce et al. 2012). Functional studies have confirmed the relevance of 

AS3MT in the methylation of arsenic (Chen et al. 2011; Drobna et al. 2006; Thomas et al. 2004; 

Wood et al. 2006). Those studies, however, also suggest that other genes, in addition to non­
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genetic factors, may contribute to arsenic methylation and distribution in human tissues, although 

the genes involved remain largely unknown. Genome wide genetic approaches may contribute to 

the discovery of genes related to variation in urine arsenic metabolites. Moreover, while arsenic 

metabolism shows evidence for familial aggregation (Chung et al. 2002), the heritability of urine 

arsenic methylation patterns has not been evaluated. 

The Strong Heart Study (SHS) is a population­based prospective cohort study funded by 

the National Heart, Lung and Blood Institute to evaluate cardiovascular disease and its risk 

factors, including genetic and environmental determinants, in 13 US American Indian 

communities from Arizona, Oklahoma and North and South Dakota (Lee et al. 1990). Some of 

these communities are known to be exposed to arsenic in drinking water (Navas­Acien et al. 

2009). In this study, we first evaluated the heritability of urine arsenic methylation patterns in 

SHS participants who had at least one relative within the cohort. In a subset of the population 

with genome­wide short tandem repeat (STR) markers available, we conducted a preliminary 

study to evaluate the presence of genetic loci associated with the distribution of urine arsenic 

metabolites by conducting a genome­wide quantitative trait locus (QTL) linkage scan. 

METHODS 

Study population 

From 1989 to 1991, all men and women 45 to 74 years of age from selected communities 

in Arizona and Oklahoma were invited to participate in the SHS (Lee et al. 1990). In North and 

South Dakota, a cluster sampling technique was used. Of all individuals invited, 62% agreed to 

participate. Participants were similar to non­participants in age, body mass index, and self­

reported frequency of diabetes. Women were more likely to participate than men. Starting in 
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1998, the Strong Heart Family Study (SHFS) recruited extended family members ≥18 years old 

of original SHS participants to study genes that contribute to cardiometabolic risk in American 

Indian populations (North et al. 2003). For the SHFS, families who had at least 5 living siblings 

including 3 original SHS participants were invited and parents, spouses, offspring, spouses of 

offspring and grandchildren were enrolled to build extended pedigrees. The SHFS genotyped 

genome­wide STR markers in all participants. 

Urine metals, including arsenic species inorganic arsenic, MMA and DMA, were 

measured in 3,974 participants who particgipated in the SHS baseline visit (1989­1991) (Scheer 

et al. 2012). For the present analysis we excluded one participant missing total arsenic and one 

participant missing inorganic arsenic concentrations. We further excluded 222 participants with 

%iAs, %MMA or %DMA below the limit of detection. We also excluded 5 participants missing 

information on smoking, 9 participants missing information on alcohol consumption, 16 

participants missing body mass index measurement, 1 participant missing education and 5 

participants missing urine creatinine, leaving a sample size of 3,714 SHS participants. Among 

those, 2,907 SHS participants had at least 1 relative within the cohort, allowing heritability 

analysis and 487 were also SHFS participants with STR marker information for the linkage 

analysis. 

The Indian Health Service Institutional Review Board, the institutional review boards of 

the participating institutions and the 13 participating tribes approved the SHS and SHFS protocol 

and consent forms. All participants provided informed consent when enrolled into the SHS, and 

the current heritability and linkage study is covered by the original SHS consent form, as arsenic 

is a potential cardiovascular risk factor. In addition, this study was specifically approved by the 

Strong Heart Study Publications and Presentations Committee and by the participating tribes. 
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Urine arsenic 

Spot urine samples were collected in 1989­91, frozen within 1­2 hours of collection, and 

stored at ­80ºC at the Penn Medical Laboratory, MedStar Health Research Institute (Hyattsville, 

MD and Washington, DC, USA) (Lee et al. 1990). In 2009, up to 1.0 mL of urine from each 

participant was transported on dry ice to the Trace Element Laboratory of the Institute of 

Chemistry­Analytical Chemistry, Karl Franzens University (Graz, Austria). There, total arsenic 

concentrations in the urine samples were measured by inductively coupled plasma mass 

spectrometry (ICPMS) (Agilent 7700x ICPMS, Agilent Technologies, Waldbronn, Germany), 

and arsenic species were determined by high performance liquid chromatography (HPLC; 

Agilent 1100) coupled to ICPMS, which served as the arsenic selective detector 

(HPLC/ICPMS). The analytical methods used to determine urine arsenic concentrations have 

been described in detail (Scheer et al. 2012). The limits of detection were 0.2 1g/L for total 

arsenic, and 0.1 1g/L for iAs, MMA, DMA, and for arsenobetaine plus other cations. 

Participants with iAs, MMA and DMA below the limits of detection were excluded from this 

analysis (5.3% for iAs, 0.7% for MMA, 0.03% for DMA) as it is not possible to evaluate arsenic 

metabolism with undetectable urine arsenic biomarkers. An in­house reference urine and the 

NIES No 18 Human urine from the National Institute for Environmental Studies, Ibaraki, Japan, 

were analyzed together with the samples. The inter­assay coefficients of variation for the in­

house reference urine for total arsenic, inorganic arsenic, MMA, DMA, and arsenobetaine plus 

other cations were 4.4%, 6.0%, 6.5%, 5.9% and 6.5%, respectively. 

Urine arsenic data were transmitted to the Texas Biomedical Research Institute 

(previously known as Southwest Foundation for Biomedical Research) where they were 

transferred to the pedigree data management system PEDSYS (Dyke 1999). 
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Demographic and lifestyle assessment 

Baseline sociodemographic, life­style and anthropometric information was obtained 

through interview and physical examination conducted by trained nurses and medical assistants 

(Lee et al. 1990). The standardized in­person questionnaire included sociodemographic data 

(age, sex, education) and smoking status (never, current, former). Body mass index (BMI) was 

estimated by dividing measured weight by measured height squared (kg/m
2
). 

Short tandem repeat markers 

DNA from white cells was isolated and stored at the Texas Biomedical Research Institute 

(San Antonio, Texas). Nearly 400 STR markers, spaced, on average 10 centimorgans (cM) apart 

(range 2.4 to 24.1 cM, see Supplemental Material, Table S3), were genotyped using ABI PRISM 

Linkage Mapping Set­MD10 version 2.5 (Applied Biosystems, Foster City, CA). Individual 

polymerase chain reaction products were loaded into an ABI PRISM 377 Genetic Analyzer for 

laser­based automated genotyping. Genotypes were assigned using the Genotyper software 

system (Applied Biosystems). Pedigree relationships were verified and likely genotyping errors 

were detected using PREST software (Pedigree Relationship Statistical Tests)(McPeek and Sun 

2000; Sun et al. 2002) and SimWalk2 (Sobel et al. 2002). Mendelian inconsistencies and 

unlikely double recombinants in marker genotypes were removed with an overall blanking rate 

<1% in the total study population. The average heterozygosity was 0.69 for Arizona, 0.76 for 

North and South Dakota and 0.74 for Oklahoma. 

Statistical Analysis 

Descriptive analysis. To evaluate urine arsenic methylation and excretion patterns, we 

computed the proportion of iAs, of MMA and of DMA by dividing the concentration of each 
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species over the sum of all 3 species and multiplying by 100 (%iAs, %MMA and %DMA). The 

median (interquartile range) percentages of urine arsenic species were reported for the overall 

population and according to age (≤55 and >55 years), sex (men and women), education (<12 and 

≥ 12 years completed), body mass index (<30 and ≥30 kg/m
2
), smoking (never, former, current), 

alcohol consumption (never, former, current), and study region (Arizona, Oklahoma, and the 

Dakotas). 

Heritability. We estimated the heritability of %iAs, %MMA and %DMA using a general 

pedigree variance components decomposition­based method as conducted by the software 

Sequential Oligogenic Linkage Analysis Routines (SOLAR) version 4.4.0 (Blangero et al. 2012). 

A detailed description of the statistical methods used to estimate heritability is provided in 

Supplemental Material (see Supplemental Material, page 2). In brief, SOLAR incorporates the 

information contained in participant pedigrees to obtain maximum likelihood estimates for the 

proportion of unexplained variance due to additive genetic effects from polygenes (σ
2

g) and the 

proportion of variance due to unmeasured environmental covariates, measurement error, and 

non­additive genetic effects (σ
2

e). Heritability (h
2
) is defined as the proportion of unexplained 

variance in the observed distribution of the percent of each urine arsenic species that is 

2 2 2 2 2
attributable to additive genetic effects, or h = σ g / (σ g + σ e). The p­values for h are computed 

from a likelihood ratio test comparing the model in which the h
2 

component of the unexplained 

variance is estimated to a model where h
2 

is constrained to be zero, following a 1/2:1/2 mixture 

of chi square distributions with 1 df and a point mass at zero (Amos 1994). 

Initially, the percentage of each urine arsenic species was converted to an odds and 

introduced in a linear variance component model as a logit­transformed dependent variable 

adjusted for age, sex, age
2
, age*sex and age

2
*sex, education (<12 years of education, ≥ 12 years 
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of education), BMI (< 30 kg/m
2
, ≥ 30 kg/m

2
), smoking status (never, former, current smokers), 

alcohol drinking status (never, former, current drinkers), region (Arizona, Oklahoma and North 

and South Dakota), and total urine arsenic concentrations. To reduce kurtosis, residuals from the 

linear variance component model were transformed following an inverse Gaussian 

transformation and introduced as dependent variables in a second stage variance component 

linear regression with no covariables. A household component of the variance was explored to 

account for “shared environment” among relatives living in the same household, but was not 

retained in the final model as it did not influence the heritability estimates (data not shown). We 

performed heritability analysis for the population as a whole, and stratified by region. 

Linkage scan. A multipoint QTL linkage analysis based on variance components 

decomposition­based methods was implemented in SOLAR version 4.4.0 (Almasy and Blangero 

1998; Blangero et al. 2012), building on the heritability models described above by including 

additional variance components for QTLs based on multipoint identity­by­descent (IBD) 

matrices (see details on model formulation in the Supplemental Material, Statistical Methods). 

Multipoint IBD matrices were computed using the software Loki (Heath 1997; Heath et al. 1997) 

by using STR marker map positions obtained based on the DeCode map.(US National Heart 

Lung and Blood Institute 2012) At each chromosomal location SOLAR conducts likelihood ratio 

tests comparing a model which estimates the unexplained variance attributable to a potential 

QTL vs. a model which constrains the unexplained variance attributable to the potential QTL to 

be equal to zero. The tests at each chromosomal location are reported as LOD (“logarithm (to the 

base of 10) of the odds”) scores in favor of genetic linkage with a QTL. LOD scores of 1.9 and 

3.3 are considered suggestive and significant evidence for a QTL, respectively (Lander and 

Kruglyak 1995). To evaluate if the linkage findings may have been due to chance, we conducted 
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an adjustment analysis in order to calculate an empirical LOD score for each urine arsenic 

metabolite. The empirical LOD scores were computed by multiplying the original LOD scores 

with a correction constant. The correction constant is calculated when a fully informative 

marker, not associated with the phenotype, is simulated and goes through ~10,000 replicates, 

IBDs are calculated for this marker and the LOD score is computed for linkage of this phenotype 

to this marker. In this analysis, if the original LOD score is similar to the adjusted LOD score, 

the possibility of findings due to chance alone is low. 

Sensitivity analyses. Several sensitivity analyses were conducted for both the heritability 

and the linkage scan. First, we adjusted for BMI as continuous rather than categorical. Second, 

we added an interaction term for BMI (categorical)*sex. Third, we further adjusted for urine 

selenium. Fourth, we accounted for urine dilution by adjusting for urine creatinine rather than by 

dividing by urine creatinine. Fifth, we repeated the analyses without accounting for urine 

dilution. The heritability and linkage scan analyses remained unchanged (data not shown). 

RESULTS 

Descriptive analysis 

Median (interquartile range [IQR]) total urine arsenic concentrations were 18.5 (12.5, 

27.2) 1g/g in Arizona, 8.2 (5.6, 12.9) 1g/g in Oklahoma and 12.5 (8.2, 18.9) 1g/g in North and 

South Dakota (Table 1). The median (IQR) urine arsenobetaine concentrations were 0.7 (0.4, 

1.6) 1g/g, consistent with the low self­reported seafood consumption in the study population. 

The median (IQR) for %iAs, %MMA and %DMA were 7.7 (5.4, 10.7)%, 13.6 (10.5, 17.1)% and 

78.4 (72.5, 83.1)%, respectively, with no differences by total urine arsenic concentrations above 

and below the median (Table 2). The %MMA was higher in men compared to women, in 
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participants from North and South Dakota compared to other regions, in participants with BMI 

<30 kg/m
2 

compared to ≥30 kg/m
2
, and current smokers compared to non­smokers (Table 2). 

Urine arsenic levels and participant characteristics in the subsample of 487 participants with 

information for the linkage analysis were similar to those of the larger study sample included in 

the heritability analysis (see Supplemental Material, Tables S1 and S2). Total urine arsenic 

concentrations in the full study sample were weakly correlated with %iAs and %MMA, but were 

not correlated with %DMA (Supplemental Material, Figure S1). The %iAs and %MMA were 

moderately positively correlated (Spearman correlation coefficient 0.46). The %DMA was 

strongly negatively correlated with %iAs and %MMA (Spearman correlation coefficients ­0.81 

and ­0.87, respectively). 

Heritability 

After accounting for age, sex, education, smoking, alcohol consumption, BMI and region, 

the estimated residual heritability was 53% for %iAs, 50% for %MMA and 59% for %DMA, 

with similar estimates when stratified by study region (Table 3). 

Linkage scan 

We found suggestive evidence in favor of QTLs for %iAs on chromosomes 5 (LOD=2.03 

at 39 cM, marker D5S416), 9 (LOD=2.05 at 51 cM, between markers D9S171 and D9S161) and 

11 (LOD=1.91 at 9 cM, marker D11S1338); and for %MMA on chromosome 9 (LOD=2.10 at 

162 cM, marker D9S158) (Figure 1 and Supplemental Material, Figure S2). The correction 

constants for computing empirical LOD scores were 0.99 for %iAs, 0.87 for %MMA and 0.92 

for %DMA. Thus, the adjusted LOD scores for %iAs remained very similar to the original scores 

(2.01, 2.03 and 1.89 for %iAs on chromosomes 5, 9 and 11, respectively), whereas the adjusted 
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LOD for %MMA on chromosome 9 decreased to a greater extent (adjusted LOD=1.83). A peak 

for %DMA on chromosome 10 within 2 megabases of AS3MT did not reach the level of 

suggestive evidence in favor of QTLs (LOD=1.80 at 125 cM, between markers D10S192 and 

D10S597) (Figure 1 and Supplemental Material, Figure S2). 

In analyses stratified by geographic region, the peak in chromosome 5, the two peaks in 

chromosome 9 and the peak in chromosome 10 were smaller but present in all the 3 regions (see 

Supplemental Material, Figure S2). There were also differences by region. In Oklahoma there 

was suggestive evidence in favor of an additional QTL for %MMA on chromosome 18 

(LOD=2.21 at 22 cM, markers D18S63 and D18S452) and for %DMA on chromosome 19 

(LOD=2.29 at 79 cM, marker D19S902). In North and South Dakota there were suggestive peaks 

for %MMA and %DMA on chromosome 12 (LOD=1.89 at 56 cM and 2.93 at 61 cM, 

respectively, markers D12S345 and D12S85) and for %DMA on chromosome 16 (LOD=1.95, at 

39 cM, marker D16S3103). 

DISCUSSION 

This population­based study in American Indian communities from Arizona, Oklahoma 

and North and South Dakota supports a genetic contribution to variability in the distribution of 

urine arsenic metabolites. The heritability of urine arsenic metabolites ranged between 50% for 

% MMA and 59% for % DMA, with no major differences by study region. Based on a QTL 

linkage scan in a subset of our study population, we identified several genetic loci that may 

contribute to the pattern of urine arsenic metabolites. The presence of multiple loci indicates that, 

as suspected, multiple genes may be involved. Our unbiased discovery approach identified 

potential areas of the genome that may be related to metabolic processes and excretion of arsenic 
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species in urine. Several biologically plausible genes (Hernandez and Marcos 2008) were located 

in those areas, including 3 histone methyltransferases (PR domain zinc finger protein 9 (PRDM9) 

on chromosome 5, histone methyltransferase EHMT1 on chromosome 9, and ribosome RNA­

processing protein 8 (RRP8) on chromosome 11) and one aquaglyceroporin, aquaglyceropin 3 

(AQP3) on chromosome 9. The peak for %DMA on chromosome 10 was within 2 megabases of 

AS3MT but did not reach the level of suggestive evidence. Larger linkage studies and fine 

mapping are needed to confirm the relevance of these findings and to identify the genes and 

variants related to arsenic methylation patterns in urine. 

In human populations, arsenic metabolism is commonly studied by measuring the relative 

proportion of inorganic and methylated arsenic metabolites in urine (Vahter 2000). Determinants 

of arsenic metabolism include sex, smoking, alcohol intake, nutritional status, body mass index 

and race/ethnicity (Gamble et al. 2005; Gomez­Rubio et al. 2011; Gomez­Rubio et al. 2012; 

Hopenhayn­Rich et al. 1996a; Hsueh et al. 2003; Navas­Acien et al. 2009; Steinmaus et al. 

2005). Men, smokers, people who drink alcohol, and people with nutritional deficiencies have 

higher % MMA and lower % DMA in urine (Gamble et al. 2005; Hsueh et al. 2003; Navas­

Acien et al. 2009). Nutritional deficiencies, especially low folate and selenium levels, have been 

associated with lower arsenic methylation capacity, and could play an important role in arsenic 

toxicity (Christian et al. 2006; Gamble et al. 2006; Heck et al. 2007; Hsueh et al. 2003). Obesity 

and indigenous American ancestry on the other hand have been associated with increased % 

DMA in urine (Gomez­Rubio et al. 2011; Gomez­Rubio et al. 2012). Studies on the role of 

arsenic exposure levels in arsenic metabolism have been inconsistent. Some studies have shown 

no relationship between exposure levels and methylation patterns (Hopenhayn­Rich et al. 1996a; 

Hopenhayn­Rich et al. 1996b). Others have found increasing arsenic levels in drinking water 
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were associated with higher %MMA and lower %DMA in urine (Heck et al. 2007; Lindberg et 

al. 2008). In our study, at low­moderate arsenic exposure levels, the distribution of arsenic 

species was similar for participants with urine total arsenic concentrations below and above the 

median. Non­genetic factors could result in false positives in a linkage study if they mimic 

Mendelian patterns, an unlikely occurrence. Regarding indigenous American ancestry, our 

findings are consistent with those from Andean (Engstrom et al. 2010; Hopenhayn­Rich et al. 

1996b; Vahter et al. 1995) and Northwest Mexican (Gomez­Rubio et al. 2012) communities 

characterized by higher % DMA in urine compared to populations in Europe and Asia (Chiou et 

al. 1997; Gamble et al. 2005; Kile et al. 2011; Lindberg et al. 2007). The different arsenic 

methylation profile in American Indian populations could be partly genetically determined. 

A number of studies have estimated associations of genetic polymorphisms with arsenic 

metabolism in different populations (Chiou et al. 1997; Engstrom et al. 2011; Gomez­Rubio et 

al. 2010; Hernandez et al. 2008; Hernandez and Marcos 2008; Lindberg et al. 2007; McCarty et 

al. 2007; Meza et al. 2005; Schlawicke et al. 2007; Schlawicke et al. 2009; Vahter 2000), as 

measured by the relative distribution of inorganic and methylated metabolites in urine. So far, 

those studies have evaluated only a limited number of polymorphisms, and no genome wide 

scans, using either SNPs or microsatellite markers (STR), are available. Polymorphisms in 

AS3MT have been associated with urine arsenic metabolites in populations in Argentina 

(Engstrom et al. 2011; Schlawicke et al. 2007; Schlawicke et al. 2009), Chile (Hernandez et al. 

2008), Mexico (Gomez­Rubio et al. 2010; Meza et al. 2005), Bangladesh (Engstrom et al. 2011), 

and Central Europe (Lindberg et al. 2007). Moreover, the functional relevance of AS3MT is well 

established (Chen et al. 2011; Drobna et al. 2006; Thomas et al. 2004; Wood et al. 2006). In our 

study, the peak on chromosome 10 close to AS3MT did not reach the level of suggestive 
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evidence for linkage, and larger linkage studies within the overall Strong Heart Family Study 

population, as well as association studies, are needed to further evaluate the relevance of AS3MT 

in our population. Recently, another methyltransferase, N­6 adenine­specific DNA 

methyltransferase (N6AMT1), was shown in vitro to methylate arsenic in human urothelial cells 

(Ren et al. 2011). However, there was no evidence of a peak in the vicinity of this gene, which is 

located on chromosome 21, in our linkage scan. Some of the peaks in our study, however, were 

within 2 megabases of histone methyltransferases (PRDM9, EHMT1 and RRP8). In Oklahoma, 

the peak for %MMA on chromosome 18 was close to RNA methyltransferase (RNMT) and in 

North and South Dakota the peaks for %MMA and %DMA on chromosome 12 were close to 

methyltransferase­like 20 (METTL20). The possible role of these methylatransferases in arsenic 

metabolism has not been previously evaluated. The localization of QTLs in gene regions 

encompassing several histone methyltransferases is interesting given the increasingly recognized 

connections between arsenic and epigenetic modifications including histone methylation and 

acetylation (Arita and Costa, 2009; Baccarelli and Bollati, 2009; Hou et al., 2012; Martinez­

Zamudio and Ha, 2011). 

In addition to methyltransferases, other genes have been suggested to play a role in 

arsenic metabolism, including glutathione and glutathione transferase genes, one­carbon 

metabolism and reduction genes, purine nucleoside phosphorylase genes and transporter genes 

(Hernandez and Marcos 2008). Transporter genes could be important for the absorption and 

excretion of inorganic arsenic species (Hernandez and Marcos 2008). In our study, we found a 

peak for % iAs within 2 megabases of AQP3 on chromosome 9. In vitro studies have shown that 

uptake of inorganic trivalent arsenicals is facilitated by several AQP cell membrane proteins 

(Calatayud 2012; Liu et al. 2002; Liu et al. 2004). In vivo, AQP9­null mice had reduced arsenic 
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clearance (Carbrey JM 2009). In humans, polymorphisms in AQP3 have recently been related to 

increased bladder cancer risk in individuals from New Hampshire exposed to arsenic in drinking 

water (Lesseur et al. 2012). Human studies are needed to evaluate the association of 

aquaglyceroporin polymorphisms with urine arsenic metabolites. 

Our study has a number of limitations. First, the sample size for the linkage scan was 

small, particularly when stratified by region. Although the results of the heritability analyses 

were similar across the 3 regions, a larger study sample would be needed to confirm the 

consistency of the QTL linkage scan across regions and to evaluate gene­environment 

interactions by other characteristics such as arsenic exposure and sex. Ongoing arsenic speciation 

analysis in all SHFS participants and additional genetic analysis of a panel of polymorphisms in 

candidate genes potentially related to arsenic metabolism, including those informed by the 

present study, will allow us to determine if the linkages observed remain in the larger population 

as well as to study potential gene­environment interactions for arsenic related health effects. 

A second limitation is that only one measurement of urine arsenic was available, though 

we confirmed the relative constancy of urine arsenic methylation patterns over a 10 year period 

in a pilot study of the same population (Navas­Acien et al. 2009). In addition, we could not 

determine if the loci associated with arsenic methylation patterns in urine were also associated 

with methylation patterns in other tissues or fluids, for instance blood. Also, as in other linkage 

scans, peaks included relatively large genomic regions and substantial uncertainty remains 

regarding the specific genes involved. Finally, our population was exposed to low­moderate 

arsenic levels (from <10 to >50 1g/L in drinking water) and the relevance of the findings at 

different exposure levels is unknown. Strengths of the study include the availability of highly 

informative complex pedigrees for evaluating genetic determinants, the large sample size for the 
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heritability analysis, and the high quality standardized protocols used to recruit participants, 

conduct interviews and physical examinations, collect biological specimens, and perform 

laboratory analyses to measure arsenic species using highly sensitive methods (Lee et al. 1990; 

Scheer et al. 2012). 

In conclusion, our heritability analysis and preliminary genome­wide linkage scan 

supports the hypothesis that genetic variation across the genome contributes substantially to the 

variability of urine arsenic methylation patterns in urine. The discovery and characterization of 

genes involved in arsenic metabolism is an important area of research as arsenic methylation 

patterns in urine have been related to cancer and cardiovascular disease risk (Chen et al. 2003; 

Del Razo et al. 1997; Hsueh et al. 1997; Kile et al. 2011; Steinmaus et al. 2006; Wu et al. 2006; 

Yu et al. 2000). Additional epidemiologic and experimental studies are needed to identify 

specific variants that are related to arsenic metabolism, confirm the findings in different 

populations, evaluate the function of potentially novel candidate genes such as histone 

methyltransferases and aquaglyceroporins, and evaluate the role of arsenic metabolism genes and 

of arsenic­gene interactions in arsenic related toxicity and health effects. 
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Table 1. Characteristics of Strong Heart Study participants with at least one relative within the cohorta 

Arizona Oklahoma North/South Dakota Overall 

Total (N) 1,259 1,139 509 2,907 

Age (years) 55.4 (0.2) 56.6 (0.2) 56.0 (0.4) 56.0 (0.1) 

Sex (% males) 36.2 (1.4) 43.7 (1.5) 43.8 (2.2) 40.5 (0.9) 

Education (%<High School) 60.8 (1.4) 30.5 (1.4) 47.9 (2.2) 46.6 (0.9) 

BMI (kg/m
2
) 36.5 (0.2) 30.7 (0.2) 29.9 (0.3) 31.4 (0.1) 

Smoking status (%) 

Former 35.1 (1.4) 36.1 (1.4) 30.5 (2.0) 35.3 (0.9) 

Current 19.5 (1.1) 35.1 (1.4) 46.6 (2.2) 30.4 (0.9) 

Current alcohol drinkers (%) 

Former 39.6 (1.4) 45.4 (1.5) 38.2 (2.2) 41.7 (0.9) 

Current 41.9 (1.4) 37.9 (1.4) 50.9 (2.2) 41.9 (0.9) 

Total arsenic (µg/g)b 18.5 (12.5, 27.2) 8.2 (5.6, 12.9) 12.5 (8.2, 18.9) 12.9 (7.9, 21.0) 

Arsenobetaine (µg/g) b 0.8 (0.5, 1.7) 0.7 (0.4, 1.8) 0.5 (0.3, 1.0) 0.7 (0.4, 1.6) 

Urine selenium (µg/g) b 48.0 (36.5, 64.3) 42.2 (33.9, 55.4) 63.7 (47.4, 85.3) 47.7 (36.1, 64.9) 

a
Percentages (standard errors) for categorical variables or means (standard errors) for continuous variables.



b
Median (Interquartile range).



Total arsenic was measured directly using inductively coupled plasma mass spectrometry (ICPMS, see methods section).
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   N   % Inorganic As    % MMA   % DMA 

 Overall  2,907    7.7 (5.4, 10.7)    13.6 (10.5, 17.1)    78.4 (72.5, 83.1) 

  Age, years     

   ≤55  1,481     8.3 (5.8, 11.2)    13.6 (10.4, 17.2)    77.8 (72.1, 82.8) 

   >55  1,426    7.2 (5.1, 10.1)    13.6 (10.6, 17.0)    79.1 (73.0, 83.5) 

Sex      

   Men  1,177     9.2 (6.4, 12.7)    15.4 (12.1, 18.9)    75.0 (68.8, 80.7) 

   Women  1,730    6.9 (4.9, 9.4)    12.6 (9.6, 15.7)    80.2 (75.3, 84.4) 

 Study region      

  Arizona   1,259    8.6 (6.1, 11.5)    13.3 (10.4, 16.4)    78.0 (72.6, 82.5) 

  Oklahoma   1,139     6.6 (4.6, 9.3)    13.3 (10.2, 16.8)    79.6 (74.0, 84.3) 

   Dakotas 509      8.1 (5.9, 11.5)    15.3 (11.9, 19.4)    76.5 (69.2, 81.6) 

 Education     

     > 12 years  1,551     7.4 (5.3, 10.6)    13.5 (10.3, 16.9)    78.7 (72.7, 83.5) 

     ≤ 12 years  1,356    8.1 (5.7, 11.0)    13.6 (10.8, 17.3)    78.2 (72.2, 82.6) 
2  BMI, kg/m      

   <30  1,329     8.3 (5.7, 11.4)    15.2 (11.8, 18.6)    76.4 (70.2, 81.3) 

    ≥ 30  1,578    7.3 (5.3, 10.1)    12.5 (9.7, 15.6)    79.9 (74.5, 84.2) 

 Smoking     

  Never   998    7.3 (5.3, 10.0)    13.2 (10.0, 16.0)    79.4 (74.2, 83.7) 

  Former   1,026    7.6 (5.3, 10.5)    13.3 (10.4, 16.9)    78.8 (72.9, 83.7) 

  Current   883    8.6 (5.8, 11.8)    14.8 (11.2, 18.6)    76.6 (70.1, 81.8) 

 Alcohol drinking     

  Never   476    7.1 (5.2, 9.5)    13.4 (10.5, 16.3)    79.6 (74.0, 83.4) 

  Former   1,212    7.5 (5.3, 10.7)    13.6 (10.5, 17.0)    78.4 (72.6, 83.5) 

  Current   1,219    8.2 (5.7, 11.2)    13.7 (10.5, 17.5)    77.8 (71.7, 82.8) 
a

  Total Arsenic, µg/g     

    < 12.9  1,452    7.3 (5.2, 10.1)    14.3 (11.2, 17.8)    78.2 (72.3, 82.7) 

    ≥ 12.9  1,455    8.2 (5.8, 11.4)    13.0 (9.9, 16.4)    78.8 (72.7, 83.5) 
a

 Arsenobetaine, µg/g     

    < 0.7  1,448    8.0 (5.7, 10.9)    14.3 (11.0, 17.6)    77.6 (71.9, 82.2) 

    ≥ 0.7  1,459    7.5 (5.1, 10.5)    13.1 (10.0, 16.5)    79.4 (73.5, 83.9) 
a

  Urine selenium, µg/g     

    < 47.7  1,452     7.8 (5.4, 11.0)    14.2 (10.9, 17.7)    77.7 (71.6, 82.6) 

    ≥ 47.7  1,455     7.7 (5.5, 10.5)    13.1 (10.1, 16.3)    79.1 (73.5, 83.5) 
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Table 2. Median (interquartile range) of percentage urine arsenic species in the 

Strong Heart Study participants with at least one relative within the cohort 

aThe cut­off is the median.



For BMI we selected 30 kg/m2, a cut­off commonly used to classify individuals as obese and



non­obese. For education we selected 12 years of education, as at least 12 years of education is



consistent with the completion of high school.



Total arsenic was measured directly using inductively coupled plasma mass spectrometry



(ICPMS, see methods section).
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Table 3. Heritability of urine arsenic metabolites in Strong Heart Study participants with 

relatives within the original cohort 

% Variance 

Heritability (SE) P­value explained by 

covariables 

Overall (N=2,907) 

% iAs 0.53 (0.07) <0.001 15.5% 

% MMA 0.50 (0.07) <0.001 19.4% 

% DMA 0.59 (0.06) <0.001 20.4% 

Arizona (N=1,259) 

% iAs 0.46 (0.12) <0.001 11.8% 

% MMA 0.51 (0.12) <0.001 15.1% 

% DMA 0.60 (0.11) <0.001 16.4% 

Oklahoma (N=1,139) 

% iAs 0.50 (0.12) <0.001 10.6% 

% MA 0.53 (0.11) <0.001 22.6% 

% DMA 0.62 (0.10) <0.001 20.9% 

North and South Dakota (N=509) 

% iAs 0. 60 (0.11) <0.001 19.6% 

% MMA 0.36 (0.12) 0.001 19.9% 

% DMA 0.55 (0.11) <0.001 23.4% 

Adjusted for age, age
2
, sex, age*sex, age

2
*sex, smoking status (never, former, current), education (> 12 

years, ≤ 12 years), body mass index (<30 and ≥30 kg/m
2
), alcohol status (never, former, current), location 

(Dakotas, Oklahoma and Arizona) and total arsenic (log µg/g). Residual kurtosis ranged from ­0.14 to ­

0.04. The number of pair relationships in the overall sample is distributed as follows: 93 parent­offspring; 

1,142 siblings; 271 avuncular; 73 half siblings; 3 double 1st cousins; 4 grand avuncular; 32 half 

avuncular; 172 1st cousins; 9 half 1st cousins and half 2nd cousins; 13 1st cousins once removed (1 rem); 

9 half 1st cousins; 9 half 1st cousins, 1 rem and half 2nd cousins, 1 rem. 
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Figure legend 

Figure 1. LOD scores on Chromosomes 5, 9, 10 and 11 for urine arsenic metabolites in Strong 

Heart Study participants with STR marker genotype (N=487). Models were adjusted for age, 

age 
2
, sex, age*sex, age

2
*sex, smoking status (never, former, current), education (> 12 years, ≤ 12 

years), alcohol drinking status (never, former, current), body mass index (<30 and ≥30 kg/m2), 

location (Dakotas, Oklahoma and Arizona) and total arsenic (log µg/g). Residual kurtosis was ­

0.14 for % inorganic arsenic, %MMA and %DMA. The number of pair relationships among the 

487 participants was distributed as follows: 33 parent­offspring; 268 siblings; 93 avuncular; 36 

half siblings; 2 double 1st cousins; 3 grand avuncular; 19 half avuncular; 87 1st cousins; 9 half 

1st cousins and half 2nd cousins; 8 1st cousins once removed (1 rem); 5 half 1st cousins; 6 half 

1st cousins, 1 rem and half 2nd cousins, 1 rem. 

29 



 

 

 

                               

                 

 

 
 

              

                 

              

                

             

                 

                      

          

 

 

Page 30 of 30 

Figure 1. LOD scores on Chromosomes 5, 9, 10 and 11 for urine arsenic metabolites in 

Strong Heart Study participants with STR marker genotype (N=487) 

Models were adjusted for age, age
2
, sex, age*sex, age

2
*sex, smoking status (never, former, current), 

education (> 12 years, ≤ 12 years), alcohol drinking status (never, former, current), body mass index (<30 

and ≥30 kg/m2), location (Dakotas, Oklahoma and Arizona) and total arsenic (log µg/g). Residual 

kurtosis was ­0.14 for % inorganic arsenic, %MMA and %DMA. The number of pair relationships among 

the 487 participants was distributed as follows: 33 parent­offspring; 268 siblings; 93 avuncular 

(uncle/aunt); 36 half siblings; 2 double 1st cousins; 3 grand avuncular; 19 half avuncular; 87 1st cousins; 

9 half 1st cousins and half 2nd cousins; 8 1st cousins once removed (1 rem); 5 half 1st cousins; 6 half 1st 

cousins, 1 rem and half 2nd cousins, 1 rem. 
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